Basic Pascal Tutorial/Chapter 3/Solution/ja

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

3Ea - 解答 (著者: Tao Yue, 状態: 原文のまま修正なし)

フィボナッチ数列問題の解答

```(* 著者:    Tao Yue
日付:      19 July 1997
記述:
最初の10個のフィボナッチ数列の数を求める。
Version:
1.0 - original version
*)

program Fibonacci;

var
Fibonacci1, Fibonacci2 : integer;
temp : integer;
count : integer;

begin    (* Main *)
writeln ('最初の10個のフィボナッチ数列は:');
count := 0;
Fibonacci1 := 0;
Fibonacci2 := 1;
repeat
write (Fibonacci2:7);
temp := Fibonacci2;
Fibonacci2 := Fibonacci1 + Fibonacci2;
Fibonacci1 := Temp;
count := count + 1
until count = 10;
writeln;

(* もちろん、この問題をとくために FOR ループや WHILE ループを使うこともできる。 *)

end.     (* Main *)```

2の累乗値の解答

```(* Author:    Tao Yue
Date:      13 July 2000
Description:
Display all powers of two up to 20000, five per line
Version:
1.0 - original version
*)

program PowersofTwo;

const
numperline = 5;
maxnum = 20000;
base = 2;

var
number : longint;
linecount : integer;

begin    (* Main *)
writeln ('Powers of ', base, ', 1 <= x <= ', maxnum, ':');
(* Set up for loop *)
number := 1;
linecount := 0;
(* Loop *)
while number <= maxnum do
begin
linecount := linecount + 1;
(* Print a comma and space unless this is the first
number on the line *)
if linecount > 1 then
write (', ');
(* Display the number *)
write (number);
(* Print a comma and go to the next line if this is
the last number on the line UNLESS it is the
last number of the series *)
if (linecount = numperline) and not (number * 2 > maxnum) then
begin
writeln (',');
linecount := 0
end;
(* Increment number *)
number := number * base;
end;  (* while *)
writeln;

(* This program can also be written using a
REPEAT..UNTIL loop. *)

end.     (* Main *)```

Note that I used three constants: the base, the number of powers to display on each line, and the maximum number. This ensures that the program can be easily adaptable in the future.

Using constants rather than literals is a good programming habit to form. When you write really long programs, you may refer to certain numbers thousands of times. If you hardcoded them into your code, you'd have to search them out. Also, you might use the same value in a different context, so you can't simply do a global Search-and-Replace. Using a constant makes it simpler to expand the program.

Also note that I used the longint type for the number variable. This is because to fail the test number <= 20000, number would have to reach 32768, the next power of two after 16384. This exceeds the range of the integer type: -32768 to 32767. (try it without longint and see what happens)